We present a multi-pass clustering approach to large scale. wide-scope named-entity disambiguation (NED) oil collections of web pages. Our approach Uses name co-occurrence information to cluster and hence disambiguate entities. and is designed to handle NED on the entire web. We show that on web collections, NED becomes increasing), difficult as the corpus size increases, not only because of the challenge of scaling the NED algorithm, but also because new and surprising facets of entities become visible in the data. This effect limits the potential benefits for data-driven approaches of processing larger data-sets, and suggests that efficient clustering-based disambiguation methods for the web will require extracting more specialized information front documents.
展开▼